肾气不足吃什么药| 西安什么省| 惊艳了时光温柔了岁月什么意思| 喝什么茶好| 木字五行属什么| 什么时候量血压最准确| 什么是肺部腺性肿瘤| 胆固醇高不可以吃什么| 金鱼沉底不动什么原因| zoom是什么意思| 过敏是什么原因引起的| 吸烟有什么好处| 什么军官能天天回家住| 吃什么缓解便秘| 眼花缭乱什么意思| 农历闰六月有什么讲究| 过敏性紫癜用什么药| 男士去皱纹用什么好| 厘清和理清的区别是什么| 为什么梦不到死去的亲人| 一月十五号是什么星座| 985学校是什么意思| 睡觉出汗是什么原因男性| 荷花什么时候开放| 肾主骨是什么意思| 晚上看见蛇有什么预兆| 甲醛超标有什么反应| 淡墨是什么意思| 头是什么意思| 1997年属牛的是什么命| 蜱虫长什么样子| 心率快吃什么药效果更佳| 多囊卵巢综合症是什么| 开髓引流是什么| 皮肤瘙痒症用什么药| 冰酒是什么酒| 蛇蝎心肠是什么生肖| 近字五行属什么| 尿里有泡沫是什么原因| 烟雾病是什么原因引起的| 佛口蛇心是什么生肖| 10月生日是什么星座| 02年属什么生肖| 头晕吃什么药| 脚后跟长痣有什么寓意| 鼻子发干是什么原因造成的| x片和ct有什么区别| 小孩子手脚脱皮是什么原因| 知我者非你也什么意思| 麦粒肿是什么| 沙眼衣原体是什么意思| 咦是什么意思| 日出东方下一句是什么| 梦见别人买房子是什么预兆| g6pd是什么| 甘油三酯高吃什么降得快| 421是什么意思| 写意是什么意思| 连襟是什么关系| 忌讳什么意思| 腰椎间盘突出压迫神经吃什么药| 人为什么会抽筋| 眼睛散光和近视有什么区别| 鼻子出血是什么原因| 阿华田是什么饮料| 622188开头是什么银行| 可以是什么意思| 先天性一个肾对人有什么影响| 南瓜吃了有什么好处| 澳门买什么最便宜| 亵渎什么意思| 天公作美什么意思| 钴蓝色是什么颜色| 上半身皮肤痒什么原因| 经常上火口腔溃疡是什么原因| 吃阿胶有什么好处| 女人被插入是什么感觉| 载脂蛋白b偏低是什么意思| 大什么一什么| 生物钟什么意思| 哭夫痣是什么意思| 宸字属于五行属什么| 闹肚子吃什么药| 猛犸象什么时候灭绝的| 乏力是什么意思| 有氧运动是指什么| 什么是商业保险| 八卦是什么生肖| 血糖高能喝什么粥| 皮肤黑的人穿什么颜色的衣服显白| 喝什么汤下奶最快最多| 动物的尾巴有什么作用| 一躺下就咳嗽是什么原因| 梅毒是什么症状| nos是什么单位| 什么鸟会说话| 曾舜晞是什么星座| 煞科什么意思| 黏膜是什么意思| 什么的雄鸡| 嘴臭是什么原因引起的| 阿司匹林肠溶片治什么病| 肚子左侧疼是什么原因| 鱼子酱是什么鱼的鱼子| 手麻木吃什么药好| 乳糖醇是什么| 海子为什么自杀| 排长是什么级别| 马后面是什么生肖| 煎饼卷什么菜好吃| 三个香读什么| 公元400年是什么朝代| 勿误是什么意思| 羊球是什么| 宫颈糜烂用什么药好| 嗅觉失灵是什么原因| 黄体破裂吃什么药| 阳阴阳是什么卦| 鼻子干燥用什么药| 肩胛骨痛是什么原因| 农历10月19日是什么星座| 毛血旺是什么| 新陈代谢是什么意思| 蔚姓氏读什么| 簇新是什么意思| 吃鸡蛋有什么好处| 眼球有黑色斑点是什么| 铁塔公司是干什么的| 华盖是什么| 怜香惜玉是什么意思| 什么是西米| 过敏性鼻炎用什么药效果好| 右眼流泪是什么原因| 多吃木耳有什么好处和坏处| 头皮发麻什么原因| 梦见打死黄鼠狼是什么意思| 血脂高吃什么好| 下午三点多是什么时辰| 插队是什么意思| 碱吃多了有什么危害| 七月上旬是什么时候| 肝不好有什么症状表现| 头发偏黄是什么原因| 表达什么意思| 省长是什么级别| 应无所住而生其心是什么意思| 胰腺最怕什么| butterfly是什么意思| 水漫金山是什么意思| 义父什么意思| 燕窝什么人不适合吃| 6月6日是什么日子| 七夕是什么意思| 鱼完念什么| 157是什么意思| 头痒用什么洗头可以止痒| 阴阳数字是什么数| 说什么情深似海我却不敢当| 咽炎吃什么消炎药最好| 甲状腺是什么| 脑梗吃什么药效果好| 821是什么星座| 荨麻疹吃什么药最好| 89年是什么命| 占卜什么意思| 冷冻液是什么| 氨气对人体有什么危害| 中国的国花是什么花| 胃溃疡是什么原因导致的| 公斤和斤有什么区别| 睾丸肿大吃什么药| ab型和a型生的孩子是什么血型| 蚕蛾吃什么| 男人补肾吃什么好| 尿酸吃什么药最有效果| 乌鸦反哺是什么意思| 冉字五行属什么| pcp是什么意思| 看膝盖挂什么科| 满月是什么时候| 闺六月是什么意思| 喜欢吃什么| 睡觉嗓子干是什么原因| 什么是塔罗牌| 头疼挂什么科| 狗跟什么生肖最配| 肾积水是什么原因引起的| 拉绿色大便是什么原因| 阑尾炎什么症状表现| 氯硝西泮片是什么药| 宋江是什么星| 感冒是什么症状| 双肺纹理增多是什么意思| 房性心律是什么意思| 梦见筷子是什么预兆| 女字旁一个朱念什么| 喉咙干痒吃什么药| b型血为什么招蚊子| 蝙蝠是什么类| 9月份怀孕预产期是什么时候| 鸭子炖汤和什么一起炖最有营养| 病毒性肝炎有什么症状| 女生是t是什么意思| 病毒性感冒咳嗽吃什么药效果好| 喉咙有痰是什么原因引起的| 失眠吃什么药效果好| 吃什么能缓解便秘| 梦见磨面粉是什么意思| 庄子是什么学派| 白事随礼钱有什么讲究| 79年属羊的是什么命| 儿童乘坐飞机需要什么证件| 四维是什么意思| 双鱼女和什么座最配对| 梦见炖鱼预示什么| 计抛是什么意思| 黄水病是什么病| 球蛋白偏低是什么意思| 西兰花和什么菜搭配| 白蚂蚁长什么样子图片| 肌酸激酶高吃什么药| 女人肾虚吃什么好得快| 未属什么五行| 5岁属什么| 胸上长痘痘是什么原因| omega是什么意思| 浑身解数是什么意思| 空挡是什么意思| 痣挂什么科| 虎和什么属相不合| 梦见好多人是什么意思| 黄瓜有什么营养价值| 为什么房间有蟑螂| 露从今夜白下一句是什么| 煞笔是什么意思| 白事随礼钱有什么讲究| 蚕屎有什么作用和功效| 金钱草长什么样| 明目退翳什么意思| 莲子适合什么人吃| 出淤泥而不染是什么花| 滑膜炎吃什么药最好| tp代表什么| 特警属于什么编制| 碱面是什么| 窦道是什么意思| 4月3日什么星座| 喝酒不能吃什么水果| 王大治与董洁什么关系| 氯雷他定为什么比西替利嗪贵| 小孩出冷汗是什么原因| 虚热吃什么药| 世事无常是什么意思| 胃病吃什么药最好根治| 劫煞是什么意思| 甜蜜素是什么东西| 孤臣是什么意思| 白喉采取什么隔离| 颈椎病有些什么症状| 亚麻酸是什么东西| 3什么意思| pp是什么材质| 瑶是什么意思| 榜眼是什么意思| 百度

政协陕西省委员会关于进一步加强专题调研工作的意见

百度 这个冠军也让他获得了美国业余锦标赛的参赛外卡。

The hyperbolastic functions, also known as hyperbolastic growth models, are mathematical functions that are used in medical statistical modeling. These models were originally developed to capture the growth dynamics of multicellular tumor spheres, and were introduced in 2005 by Mohammad Tabatabai, David Williams, and Zoran Bursac.[1] The precision of hyperbolastic functions in modeling real world problems is somewhat due to their flexibility in their point of inflection.[1][2] These functions can be used in a wide variety of modeling problems such as tumor growth, stem cell proliferation, pharma kinetics, cancer growth, sigmoid activation function in neural networks, and epidemiological disease progression or regression.[1][3][4]

Graphic describing the Hyperbolastic Type I function with varying parameter values.
Graphic describing the Hyperbolastic Type I function with varying parameter values.
Graphic describing the Hyperbolastic Type II function with varying parameter values.
Graphic describing the Hyperbolastic Type II function with varying parameter values.
Graphic describing the Hyperbolastic Type III function with varying parameter values.
Graphic describing the Hyperbolastic cumulative distribution function of type III with varying parameter values.
Graphic describing the Hyperbolastic probability density function of type III with varying parameter values.

The hyperbolastic functions can model both growth and decay curves until it reaches carrying capacity. Due to their flexibility, these models have diverse applications in the medical field, with the ability to capture disease progression with an intervening treatment. As the figures indicate, hyperbolastic functions can fit a sigmoidal curve indicating that the slowest rate occurs at the early and late stages.[5] In addition to the presenting sigmoidal shapes, it can also accommodate biphasic situations where medical interventions slow or reverse disease progression; but, when the effect of the treatment vanishes, the disease will begin the second phase of its progression until it reaches its horizontal asymptote.

One of the main characteristics these functions have is that they cannot only fit sigmoidal shapes, but can also model biphasic growth patterns that other classical sigmoidal curves cannot adequately model. This distinguishing feature has advantageous applications in various fields including medicine, biology, economics, engineering, agronomy, and computer aided system theory.[6][7][8][9][10]

Function H1

edit

The hyperbolastic rate equation of type I, denoted H1, is given by

?

where ? is any real number and ? is the population size at ?. The parameter ? represents carrying capacity, and parameters ? and ? jointly represent growth rate. The parameter ? gives the distance from a symmetric sigmoidal curve. Solving the hyperbolastic rate equation of type I for ? gives

?

where ? is the inverse hyperbolic sine function. If one desires to use the initial condition ?, then ? can be expressed as

?.

If ?, then ? reduces to

?.

In the event that a vertical shift is needed to give a better model fit, one can add the shift parameter ?, which would result in the following formula

?.

The hyperbolastic function of type I generalizes the logistic function. If the parameters ?, then it would become a logistic function. This function ? is a hyperbolastic function of type I. The standard hyperbolastic function of type I is

?.

Function H2

edit

The hyperbolastic rate equation of type II, denoted by H2, is defined as

?

where ? is the hyperbolic tangent function, ? is the carrying capacity, and both ? and ? jointly determine the growth rate. In addition, the parameter ? represents acceleration in the time course. Solving the hyperbolastic rate function of type II for ? gives

?.

If one desires to use initial condition ? then ? can be expressed as

?.

If ?, then ? reduces to

?.

Similarly, in the event that a vertical shift is needed to give a better fit, one can use the following formula

?.

The standard hyperbolastic function of type II is defined as

?.

Function H3

edit

The hyperbolastic rate equation of type III is denoted by H3 and has the form

?,

where ? > 0. The parameter ? represents the carrying capacity, and the parameters ? ? and ? jointly determine the growth rate. The parameter ? represents acceleration of the time scale, while the size of ? represents distance from a symmetric sigmoidal curve. The solution to the differential equation of type III is

?,

with the initial condition ? we can express ? as

?.

The hyperbolastic distribution of type III is a three-parameter family of continuous probability distributions with scale parameters ? > 0, and ? ≥ 0 and parameter ? as the shape parameter. When the parameter ? = 0, the hyperbolastic distribution of type III is reduced to the weibull distribution.[11] The hyperbolastic cumulative distribution function of type III is given by

?,

and its corresponding probability density function is

?.

The hazard function ? (or failure rate) is given by

?

The survival function ? is given by

?

The standard hyperbolastic cumulative distribution function of type III is defined as

?,

and its corresponding probability density function is

?.

Properties

edit

If one desires to calculate the point ? where the population reaches a percentage of its carrying capacity ?, then one can solve the equation

?

for ?, where ?. For instance, the half point can be found by setting ?.

Applications

edit
?
3D Hyperbolastic graph of phytoplankton biomass as a function of nutrient concentration and time

According to stem cell researchers at McGowan Institute for Regenerative Medicine at the University of Pittsburgh, "a newer model [called the hyperbolastic type III or] H3 is a differential equation that also describes the cell growth. This model allows for much more variation and has been proven to better predict growth."[12]

The hyperbolastic growth models H1, H2, and H3 have been applied to analyze the growth of solid Ehrlich carcinoma using a variety of treatments.[13]

In animal science,[14] the hyperbolastic functions have been used for modeling broiler chicken growth.[15][16] The hyperbolastic model of type III was used to determine the size of the recovering wound.[17]

In the area of wound healing, the hyperbolastic models accurately representing the time course of healing. [18] Such functions have been used to investigate variations in the healing velocity among different kinds of wounds and at different stages in the healing process taking into consideration the areas of trace elements, growth factors, diabetic wounds, and nutrition.[19][20]

Another application of hyperbolastic functions is in the area of the stochastic diffusion process,[21] whose mean function is a hyperbolastic curve. The main characteristics of the process are studied and the maximum likelihood estimation for the parameters of the process is considered.[22] To this end, the firefly metaheuristic optimization algorithm is applied after bounding the parametric space by a stage wise procedure. Some examples based on simulated sample paths and real data illustrate this development. A sample path of a diffusion process models the trajectory of a particle embedded in a flowing fluid and subjected to random displacements due to collisions with other particles, which is called Brownian motion.[23][24][25][26][27] The hyperbolastic function of type III was used to model the proliferation of both adult mesenchymal and embryonic stem cells;[28][29][30][31] and, the hyperbolastic mixed model of type II has been used in modeling cervical cancer data.[32] Hyperbolastic curves can be an important tool in analyzing cellular growth, the fitting of biological curves, the growth of phytoplankton, and instantaneous maturity rate.[33][34][35][36]

In forest ecology and management, the hyperbolastic models have been applied to model the relationship between DBH and height.[37]

The multivariable hyperbolastic model type III has been used to analyze the growth dynamics of phytoplankton taking into consideration the concentration of nutrients.[38]

Hyperbolastic regressions

edit
?
Cumulative Distribution Function of Hyperbolastic Type I, Logistic, and Hyperbolastic Type II
?
PDF of H1, Logistic, and H2

Hyperbolastic regressions are statistical models that utilize standard hyperbolastic functions to model a dichotomous or multinomial outcome variable. The purpose of hyperbolastic regression is to predict an outcome using a set of explanatory (independent) variables. These types of regressions are routinely used in many areas including medical, public health, dental, biomedical, as well as social, behavioral, and engineering sciences. For instance, binary regression analysis has been used to predict endoscopic lesions in iron deficiency anemia.[39] In addition, binary regression was applied to differentiate between malignant and benign adnexal mass prior to surgery.[40]

The binary hyperbolastic regression of type I

edit

Let ? be a binary outcome variable which can assume one of two mutually exclusive values, success or failure. If we code success as ? and failure as ?, then for parameter ?, the hyperbolastic success probability of type I with a sample of size ? as a function of parameter ? and parameter vector ? given a ?-dimensional vector of explanatory variables is defined as ?, where ?, is given by

?.

The odds of success is the ratio of the probability of success to the probability of failure. For binary hyperbolastic regression of type I, the odds of success is denoted by ? and expressed by the equation

?.

The logarithm of ? is called the logit of binary hyperbolastic regression of type I. The logit transformation is denoted by ? and can be written as

?.

Shannon information for binary hyperbolastic of type I (H1)

edit

The Shannon information for the random variable ? is defined as

?

where the base of logarithm ? and ?. For binary outcome, ? is equal to ?.

For the binary hyperbolastic regression of type I, the information ? is given by

?,

where ?, and ? is the ? input data. For a random sample of binary outcomes of size ?, the average empirical information for hyperbolastic H1 can be estimated by

?,

where ?, and ? is the ? input data for the ? observation.

Information Entropy for hyperbolastic H1

edit

Information entropy measures the loss of information in a transmitted message or signal. In machine learning applications, it is the number of bits necessary to transmit a randomly selected event from a probability distribution. For a discrete random variable ?, the information entropy ? is defined as

?

where ? is the probability mass function for the random variable ?.

The information entropy is the mathematical expectation of ? with respect to probability mass function ?. The Information entropy has many applications in machine learning and artificial intelligence such as classification modeling and decision trees. For the hyperbolastic H1, the entropy ? is equal to

?

The estimated average entropy for hyperbolastic H1 is denoted by ? and is given by

?

Binary Cross-entropy for hyperbolastic H1

edit

The binary cross-entropy compares the observed ? with the predicted probabilities. The average binary cross-entropy for hyperbolastic H1 is denoted by ? and is equal to

?

The binary hyperbolastic regression of type II

edit

The hyperbolastic regression of type II is an alternative method for the analysis of binary data with robust properties. For the binary outcome variable ?, the hyperbolastic success probability of type II is a function of a ?-dimensional vector of explanatory variables ? given by

? ,

For the binary hyperbolastic regression of type II, the odds of success is denoted by ? and is defined as

?

The logit transformation ? is given by

?

Shannon information for binary hyperbolastic of type II (H2)

edit

For the binary hyperbolastic regression H2, the Shannon information ? is given by

?

where ?, and ? is the ? input data. For a random sample of binary outcomes of size ?, the average empirical information for hyperbolastic H2 is estimated by

?

where ?, and ? is the ? input data for the ? observation.

Information Entropy for hyperbolastic H2

edit

For the hyperbolastic H2, the information entropy ? is equal to

?

and the estimated average entropy ? for hyperbolastic H2 is

?

Binary Cross-entropy for hyperbolastic H2

edit

The average binary cross-entropy ? for hyperbolastic H2 is

?

Parameter estimation for the binary hyperbolastic regression of type I and II

edit

The estimate of the parameter vector ? can be obtained by maximizing the log-likelihood function

?

where ? is defined according to one of the two types of hyberbolastic functions used.

The multinomial hyperbolastic regression of type I and II

edit

The generalization of the binary hyperbolastic regression to multinomial hyperbolastic regression has a response variable ? for individual ? with ? categories (i.e. ?). When ?, this model reduces to a binary hyperbolastic regression. For each ?, we form ? indicator variables ? where

?,

meaning that ? whenever the ? response is in category ? and ? otherwise.

Define parameter vector ? in a ?-dimensional Euclidean space and ?.

Using category 1 as a reference and ? as its corresponding probability function, the multinomial hyperbolastic regression of type I probabilities are defined as

?

and for ?,

?

Similarly, for the multinomial hyperbolastic regression of type II we have

?

and for ?,

?

where ? with ? and ?.

The choice of ? is dependent on the choice of hyperbolastic H1 or H2.

Shannon Information for multiclass hyperbolastic H1 or H2

edit

For the multiclass ?, the Shannon information ? is

?.

For a random sample of size ?, the empirical multiclass information can be estimated by

?.

Multiclass Entropy in Information Theory

edit

For a discrete random variable ?, the multiclass information entropy is defined as

?

where ? is the probability mass function for the multiclass random variable ?.

For the hyperbolastic H1 or H2, the multiclass entropy ? is equal to

?

The estimated average multiclass entropy ? is equal to

?

Multiclass Cross-entropy for hyperbolastic H1 or H2

edit

Multiclass cross-entropy compares the observed multiclass output with the predicted probabilities. For a random sample of multiclass outcomes of size ?, the average multiclass cross-entropy ? for hyperbolastic H1 or H2 can be estimated by

?

The log-odds of membership in category ? versus the reference category 1, denoted by ?, is equal to

?

where ? and ?. The estimated parameter matrix ? of multinomial hyperbolastic regression is obtained by maximizing the log-likelihood function. The maximum likelihood estimates of the parameter matrix ? is

?

References

edit
  1. ^ a b c Tabatabai, Mohammad; Williams, David; Bursac, Zoran (2005). "Hyperbolastic growth models: Theory and application". Theoretical Biology and Medical Modelling. 2: 14. doi:10.1186/1742-4682-2-14. PMC?1084364. PMID?15799781.
  2. ^ Himali, L.P.; Xia, Zhiming (2022). "Performance of the Survival models in Socioeconomic Phenomena". Vavuniya Journal of Science. 1 (2): 9–19. doi:10.4038/vjs.v1i2.9. ISSN?2950-7154.
  3. ^ Acton, Q. Ashton (2012). Blood Cells—Advances in Research and Application: 2012 Edition. ScholarlyEditions. ISBN?978-1-4649-9316-9.[page?needed]
  4. ^ Wadkin, L. E.; Orozco-Fuentes, S.; Neganova, I.; Lako, M.; Parker, N. G.; Shukurov, A. (2020). "An introduction to the mathematical modelling of iPSCs". Recent Advances in IPSC Technology. 5. arXiv:2010.15493.
  5. ^ Albano, G.; Giorno, V.; Roman-Roman, P.; Torres-Ruiz, F. (2022). "Study of a General Growth Model". Communications in Nonlinear Science and Numerical Simulation. 107. arXiv:2402.00882. Bibcode:2022CNSNS.10706100A. doi:10.1016/j.cnsns.2021.106100.
  6. ^ Neysens, Patricia; Messens, Winy; Gevers, Dirk; Swings, Jean; De Vuyst, Luc (2003). "Biphasic kinetics of growth and bacteriocin production with Lactobacillus amylovorus DCE 471 occur under stress conditions". Microbiology. 149 (4): 1073–1082. doi:10.1099/mic.0.25880-0. PMID?12686649.
  7. ^ Chu, Charlene; Han, Christina; Shimizu, Hiromi; Wong, Bonnie (2002). "The Effect of Fructose, Galactose, and Glucose on the Induction of β-Galactosidase in Escherichia coli" (PDF). Journal of Experimental Microbiology and Immunology. 2: 1–5.
  8. ^ Tabatabai, M. A.; Eby, W. M.; Singh, K. P.; Bae, S. (2013). "T model of growth and its application in systems of tumor-immunedynamics". Mathematical Biosciences and Engineering. 10 (3): 925–938. doi:10.3934/mbe.2013.10.925. PMC?4476034. PMID?23906156.
  9. ^ Parmoon, Ghasem; Moosavi, Seyed; Poshtdar, Adel; Siadat, Seyed (2020). "Effects of cadmium toxicity on sesame seed germination explained by various nonlinear growth models". Oilseeds & Fats Crops and Lipids. 27 (57): 57. doi:10.1051/ocl/2020053.
  10. ^ Kronberger, Gabriel; Kammerer, Lukas; Kommenda, Michael (2020). Computer Aided Systems Theory – EUROCAST 2019. Lecture Notes in Computer Science. Vol.?12013. arXiv:2107.06131. doi:10.1007/978-3-030-45093-9. ISBN?978-3-030-45092-2. S2CID?215791712.
  11. ^ Kamar SH, Msallam BS. Comparative Study between Generalized Maximum Entropy and Bayes Methods to Estimate the Four Parameter Weibull Growth Model. Journal of Probability and Statistics. 2020 Jan 14;2020:1–7.
  12. ^ Roehrs T, Bogdan P, Gharaibeh B, et?al. (n.d.). "Proliferative heterogeneity in stem cell populations". Live Cell Imaging Laboratory, McGowan Institute for Regenerative Medicine.
  13. ^ Eby, Wayne M.; Tabatabai, Mohammad A.; Bursac, Zoran (2010). "Hyperbolastic modeling of tumor growth with a combined treatment of iodoacetate and dimethylsulphoxide". BMC Cancer. 10: 509. doi:10.1186/1471-2025-08-149. PMC?2955040. PMID?20863400.
  14. ^ France, James; Kebreab, Ermias, eds. (2008). Mathematical Modelling in Animal Nutrition. Wallingford: CABI. ISBN?9781845933548.
  15. ^ Ahmadi, H.; Mottaghitalab, M. (2007). "Hyperbolastic Models as a New Powerful Tool to Describe Broiler Growth Kinetics". Poultry Science. 86 (11): 2461–2465. doi:10.3382/ps.2007-00086. PMID?17954598.
  16. ^ Tkachuk, S. A.; Pasnichenko, O. S.; Savchok, L. B. (2021). "Approximation of Growth Indicators and Analysis of Individual Growth Curves by Linear Dimensions of Tubular Bones in Chickens of Meat Production Direction During Postnatal Period of Ontogenesis". Ukrainian Journal of Veterinary Sciences. 12 (4). doi:10.31548/ujvs2021.04.002. S2CID?245487460.
  17. ^ Choi, Taeyoung; Chin, Seongah (2014). "Novel Real-Time Facial Wound Recovery Synthesis Using Subsurface Scattering". The Scientific World Journal. 2014: 1–8. doi:10.1155/2014/965036. PMC?4146479. PMID?25197721.
  18. ^ Kiziloz, S.; Ward, E.J.; Hawthorne, D. (2025). "Ti3C2Tx MXene augments osmo-adaptive repression of the inflammatory stress response for improved wound repair". Nanoscale: 1–31. doi:10.1039/d4nr04622f.
  19. ^ Tabatabai, M.A.; Eby, W.M.; Singh, K.P. (2011). "Hyperbolastic modeling of wound healing". Mathematical and Computer Modelling. 53 (5–6): 755–768. doi:10.1016/j.mcm.2010.10.013.
  20. ^ Ko, Ung Hyun; Choi, Jongjin; Choung, Jinseung; Moon, Sunghwan; Shin, Jennifer H. (2019). "Physicochemically Tuned Myofibroblasts for Wound Healing Strategy". Scientific Reports. 9 (1): 16070. Bibcode:2019NatSR...916070K. doi:10.1038/s41598-019-52523-9. PMC?6831678. PMID?31690789.
  21. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2021). "Hyperbolastic Models from a Stochastic Differential Equation Point of View". Mathematics. 9 (16): 1835. doi:10.3390/math9161835.
  22. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2020). "Diffusion Processes for Weibull-Based Models". Computer Aided Systems Theory – EUROCAST 2019. Lecture Notes in Computer Science. Vol.?12013. pp.?204–210. doi:10.1007/978-3-030-45093-9_25. ISBN?978-3-030-45092-2. S2CID?215792096.
  23. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2018). "A hyperbolastic type-I diffusion process: Parameter estimation by means of the firefly algorithm". Biosystems. 163: 11–22. arXiv:2402.03416. Bibcode:2018BiSys.163...11B. doi:10.1016/j.biosystems.2017.11.001. PMID?29129822.
  24. ^ Barrera, Antonio; Román-Roán, Patricia; Torres-Ruiz, Francisco (2020). "Hyperbolastic type-III diffusion process: Obtaining from the generalized Weibull diffusion process". Mathematical Biosciences and Engineering. 17 (1): 814–833. doi:10.3934/mbe.2020043. hdl:10481/58209. PMID?31731379.
  25. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2020). "Two Stochastic Differential Equations for Modeling Oscillabolastic-Type Behavior". Mathematics. 8 (2): 155. doi:10.3390/math8020155. hdl:10481/61054.
  26. ^ Stochastic Processes with Applications. 2019. doi:10.3390/books978-3-03921-729-8. ISBN?978-3-03921-729-8.
  27. ^ Barrera, Antonio; Román-Román, Patricia; Torres-Ruiz, Francisco (2021). "T-Growth Stochastic Model: Simulation and Inference via Metaheuristic Algorithms". Mathematics. 9 (9): 959. doi:10.3390/math9090959. hdl:10481/68288.
  28. ^ Tabatabai, Mohammad A.; Bursac, Zoran; Eby, Wayne M.; Singh, Karan P. (2011). "Mathematical modeling of stem cell proliferation". Medical & Biological Engineering & Computing. 49 (3): 253–262. doi:10.1007/s11517-010-0686-y. PMID?20953843. S2CID?33828764.
  29. ^ Eby, Wayne M.; Tabatabai, Mohammad A. (2014). "Methods in Mathematical Modeling for Stem Cells". Stem Cells and Cancer Stem Cells, Volume 12. Vol.?12. pp.?201–217. doi:10.1007/978-94-017-8032-2_18. ISBN?978-94-017-8031-5.
  30. ^ Wadkin, L. E.; Orozco-Fuentes, S.; Neganova, I.; Lako, M.; Shukurov, A.; Parker, N. G. (2020). "The recent advances in the mathematical modelling of human pluripotent stem cells". SN Applied Sciences. 2 (2): 276. doi:10.1007/s42452-020-2070-3. PMC?7391994. PMID?32803125.
  31. ^ Stem Cells and Cancer Stem Cells, Volume 12. Vol.?12. 2014. doi:10.1007/978-94-017-8032-2. ISBN?978-94-017-8031-5. S2CID?34446642.
  32. ^ Tabatabai, Mohammad A.; Kengwoung-Keumo, Jean-Jacques; Eby, Wayne M.; Bae, Sejong; Guemmegne, Juliette T.; Manne, Upender; Fouad, Mona; Partridge, Edward E.; Singh, Karan P. (2014). "Disparities in Cervical Cancer Mortality Rates as Determined by the Longitudinal Hyperbolastic Mixed-Effects Type II Model". PLOS ONE. 9 (9): e107242. Bibcode:2014PLoSO...9j7242T. doi:10.1371/journal.pone.0107242. PMC?4167327. PMID?25226583.
  33. ^ Veríssimo, André; Paix?o, Laura; Neves, Ana; Vinga, Susana (2013). "BGFit: Management and automated fitting of biological growth curves". BMC Bioinformatics. 14: 283. doi:10.1186/1471-2025-08-143. PMC?3848918. PMID?24067087.
  34. ^ Tabatabai, M. A.; Eby, W. M.; Bae, S.; Singh, K. P. (2013). "A flexible multivariable model for Phytoplankton growth". Mathematical Biosciences and Engineering. 10 (3): 913–923. doi:10.3934/mbe.2013.10.913. PMID?23906155.
  35. ^ Yeasmin, Farhana; Daw, Ranadeep; Chakraborty, Bratati (2021). "A New Growth Rate Measure in Identifying Extended Gompertz Growth Curve and Development of Goodness-of-fit Test". Calcutta Statistical Association Bulletin. 73 (2): 127–145. doi:10.1177/00080683211037203.
  36. ^ Arif, Samiur (2014). Modeling Stem Cell Population Dynamics (Thesis). Old Dominion University. doi:10.25777/thnx-6q07.
  37. ^ Eby, Wayne M.; Oyamakin, Samuel O.; Chukwu, Angela U. (2017). "A new nonlinear model applied to the height-DBH relationship in Gmelina arborea". Forest Ecology and Management. 397: 139–149. Bibcode:2017ForEM.397..139E. doi:10.1016/j.foreco.2017.04.015.
  38. ^ Tabatabai, M. A.; Eby, W. M.; Bae, S.; Singh, K. P. (2013). "A flexible multivariable model for Phytoplankton growth". Mathematical Biosciences and Engineering. 10 (3): 913–923. doi:10.3934/mbe.2013.10.913. PMID?23906155.
  39. ^ Majid, Shahid; Salih, Mohammad; Wasaya, Rozina; Jafri, Wasim (2008). "Predictors of gastrointestinal lesions on endoscopy in iron deficiency anemia without gastrointestinal symptoms". BMC Gastroenterology. 8: 52. doi:10.1186/1471-230X-8-52. PMC?2613391. PMID?18992171.
  40. ^ Timmerman, Dirk; Testa, Antonia C.; Bourne, Tom; Ferrazzi, Enrico; Ameye, Lieveke; Konstantinovic, Maja L.; Van Calster, Ben; Collins, William P.; Vergote, Ignace; Van Huffel, Sabine; Valentin, Lil (2005). "Logistic Regression Model to Distinguish Between the Benign and Malignant Adnexal Mass Before Surgery: A Multicenter Study by the International Ovarian Tumor Analysis Group". Journal of Clinical Oncology. 23 (34): 8794–8801. doi:10.1200/JCO.2005.01.7632. PMID?16314639.
无功无过是什么意思 天蝎座属于什么象星座 胸外扩是什么样子 这是什么品牌 过期的牛奶有什么用
来大姨妈不能吃什么水果 养什么鱼招财转运 对什么有益英语 生物学父亲是什么意思 手臂长斑是什么原因
肺癌吃什么水果 后背有痣代表什么 肝血管瘤挂什么科 soie是什么面料 黄瓜有什么营养
迷你巴拉巴拉和巴拉巴拉什么关系 破涕为笑什么意思 睡觉打呼噜是什么病 小孩吐奶是什么原因 丝苗米是什么米
什么样的脚好看hcv8jop6ns3r.cn 肝肾亏虚吃什么药hcv7jop7ns4r.cn 12378是什么电话hcv9jop3ns7r.cn 六月八号什么星座hcv9jop4ns6r.cn 狂躁症是什么hcv9jop6ns6r.cn
舌苔紫色是什么原因hcv9jop4ns4r.cn 卸磨杀驴是什么意思naasee.com 爱放屁吃什么药gysmod.com 水晶为什么要消磁hcv9jop1ns6r.cn 什么症状需要做肠镜cl108k.com
去香港澳门旅游需要准备什么onlinewuye.com 转氨酶异常是什么意思hcv9jop5ns3r.cn 莫逆之交什么意思hcv8jop4ns0r.cn 50pcs是什么意思hcv7jop7ns2r.cn 心脏为什么会跳动bysq.com
窦性心动过速吃什么药hcv9jop2ns8r.cn 体检为什么要空腹1949doufunao.com 天罗地网是什么意思hcv9jop2ns1r.cn 禹字五行属什么的hcv8jop4ns9r.cn 充气娃娃是什么hcv8jop2ns6r.cn
百度